Defect Structures in the Brannerite-Type Vanadates. II. Mechanism of the Solid-State Synthesis of $Mn_{1-x}\phi_xV_{2-2x}Mo_{2x}O_6$ (0 $\leq x \leq 0.33$)

JACEK ZIÓŁKOWSKI,* ROMAN KOZŁOWSKI, KRZYSZTOF MOCAŁA, AND JERZY HABER

Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek, 30-239 Kraków, Poland

Received May 30, 1979; in revised form January 25, 1980

The mechanism of solid-solid reactions in mixtures of the three components Mn_2O_3 , V_2O_5 , MoO_3 has been studied by X-ray and thermogravimetric methods. The synthesis of $Mn_{1-x}\phi_xV_{2-2x}Mo_{2x}O_6$ (MV-100x) solid solutions proceeds along three main reaction paths: (a) direct formation from oxides due to efficient surface diffusion of MoO_3 and V_2O_5 over Mn_2O_3 grains, (b) formation of $MnMoO_4$ followed by its reaction with V_2O_5 to MV-33 and dilution of the obtained phase with V_2O_5 and Mn_2O_3 , and (c) reaction of preformed MnV_2O_6 and $MnMoO_4$ with V_2O_5 in which MV-20 appears as an intermediate (valid for x > 0.20). The contribution of these paths to the overall reaction depends on the composition of the initial mixture (x), temperature, and surface area of Mn_2O_3 . If the synthesis of a single-phase solid solution in a MoO_3 -poor region (x < 0.20) is aimed at, thermal treatment parameters should be selected in such a way as to prevent the preformation of MnV_2O_6 , which, once formed, is not subsequently converted to the equilibrium phase.

Introduction

In our recent work we found that MnV_2O_6 of brannerite-type structure is particularly amenable to substitution of Mo^{6+} for V^{5+} ions, the charge compensation being accomplished by generation of an equivalent number of cationic vacancies (ϕ) at Mn^{2+} sites (I). The series of solid solutions obtained had the general formula $Mn_{1-x}\phi_xV_{2-2x}Mo_{2x}O_6$. The maximum value of x was found to be 0.45 at 583°C.

This work was undertaken as a study of the nature of solid-solid reactions between Mn_2O_3 , MoO_3 , and V_2O_5 and was aimed at determining the optimum parameters for preparation of a $Mn_{1-x}\phi_xV_{2-2x}Mo_{2x}O_6$ solid solution from oxides.

Our preliminary experiments revealed that solid-solid reactions in the system

* To whom correspondence should be addressed.

investigated began with considerable efficiency at about 500°C. Higher temperatures are required, however, to ensure their completion. On the other hand, the reaction temperature should not surpass the upper limit of the brannerite solid-solution stability field. This limit is represented by curve ABC in Fig. 1, which reproduces the relevant portion of the previously determined (1) phase diagram of the MnV₂O₆-MoO₃ system. In our experiments, thus, x ranged from 0 to 0.33 and the calcination temperature ranged as a rule from 500 to 600°C.

Our symbolism for homogeneous $Mn_{1-x}\phi_{2x}V_{2-2x}Mo_{2x}O_6$ solid-solution samples includes MV to define the solvent, followed by a numeral X (=100x) which specifies the mole percentage of vanadium replaced by molybdenum in a MnV_2O_6 structure. The same symbols placed within quotation marks denote the overall composition of a sample in which reaction is not

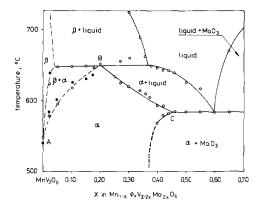


Fig. 1. A portion of the phase diagram of the MnV_2O_6 - MoO_3 system. After (1).

complete. A solid solution of stoichiometry corresponding to the overall composition of a given sample is referred to as a nominal one and denoted as $MV-X_n$.

Experimental

Materials. V_2O_5 and MoO_3 were p.a. grade commercial oxides, and Mn₂O₃(I) and (II) were obtained by pyrolysis of MnCO₃ at 700°C and Mn/CH₃COO/₂·4H₂O at 500°C, respectively. Their BET surface areas amounted to 9.31 (I) and 1.05 (II) m²/g. For both samples, microscopic examination showed approximately the same grain size distribution, the predominating grain diameter being 1.5 μ m. The syntheses were performed with Mn₂O₃(I) if not indicated otherwise. Reaction mixtures of appropriate composition, thoroughly ground in a mortar, were air heated using alumina crucibles. Details of the thermal treatment program are indicated under Results and Discussion. An elemental analysis (1) has shown that there is no loss of components during heating.

Methods. Phase identification by the X-ray diffraction method was performed as described in (1). Shifting of the brannerite (020) reflection was used to determine the Mo content in solid-solution phases appear-

ing in the reaction mixtures. Relevant calibration data are given in (1), the accuracy of the x determination being ± 0.01 .

The progress of some solid-solid reactions was monitored in a high-temperature camera. The conversions were calculated from the intensities of reactant X-ray lines by using the patterns of pure substances and their mixtures of known compositions as calibrants.

Thermogravimetric experiments were performed with a Paulik-Paulik-Erdey derivatograph. Samples of about 1 g were placed in platinum crucibles and air heated at the rate of 2.5°C/min.

Results and Discussion

Binary Reactions

The synthesis of solid solutions under study may be described by the overall equation

$$\frac{1-x}{2} \operatorname{Mn_2O_3} + (1-x) \operatorname{V_2O_5} + 2x \operatorname{MoO_3}$$

$$= \operatorname{Mn_{1-x}V_{2-2x}Mo_{2x}O_6} + \frac{1-x}{4} \operatorname{O_2}. \quad (1)$$

Reactions of solid-solid type start and develop usually at the initial intergranular contacts. In our powder mixture three types of such contacts exist, namely, $Mn_2O_3-MoO_3$, $Mn_2O_3-V_2O_5$, and $MoO_3-V_2O_5$. It is thus to be expected that the intermediate binary products

$$Mn_2O_3 + 2MoO_3 = 2MnMoO_4 + \frac{1}{2}O_2,$$
 (2)

$$Mn_2O_3 + 2V_2O_5 = 2MnV_2O_6 + \frac{1}{2}O_2,$$
 (3)

$$Mn_2O_3 + V_2O_5 = Mn_2V_2O_7 + \frac{1}{2}O_2,$$
 (4)

$$MoO_3 + V_2O_5 = V_2MoO_8$$

$$(or V_9Mo_6O_{40})$$
 (5)

will be formed, which will then react further to form $MV-X_n$ of a composition corresponding to the stoichiometry of the starting mixture. As shown below, the intermediates quoted above are really

formed without V_2MoO_8 $(V_9Mo_6O_{40}),$ which according to the literature data is synthesized effectively on more prolonged heating, or at higher temperatures (2). Thus, solid-solid reactions in the Mn₂O₃-MoO₃ and Mn₂O₃-V₂O₅ systems with molar ratios of components of 1:1 and 1:2 were studied using the thermogravimetric method and X-ray diffractometry. The product of the reaction between Mn₂O₃ and MoO₃ was MnMoO₄. Both Mn₂O₃-V₂O₅ systems produced only MnV₂O₆ at temperatures below about 600°C. At 600°C (or above) Mn₂V₂O₇ was formed along with MnV₂O₆ and a single compound corresponding in stoichiometry to the composition of the mixture was formed sequentially in the later stages of the reaction.

Figure 2 shows the curves of thermogravimetric analysis for systems containing Mn₂O₃(I) or (II) differing in surface areas.

The weight loss observed in the Mn_2O_3 – MoO_3 system is a result of reaction (2) progress. The thermogravimetric curves of the Mn_2O_3 – V_2O_5 systems are considered to be a complex result of reactions (3) and (4) in the respective temperature ranges. From these results, it may be concluded that

1° reaction (2) is always much faster than (3) or (4),

 2° the reaction rate for the Mn_2O_3 – MoO_3 and $Mn_2O-V_2O_5$ systems is proportional to the content of Mn_2O_3 in the initial mixture and to its surface area.

The effect of the surface area and reaction mixture composition on the reaction rate can be considered to be due to the two-step reaction mechanism as described in previous work for Mn₂O₃-MoO₃ systems (3). This mechanism involves a rapid diffusion of MoO₃ or V₂O₅, which spread over the surface of Mn₂O₃ grains, and gradually react with it, forming radially growing layers of product.

On monitoring the synthesis of MnV_2O_6 in a high-temperature camera we observed that diffraction intensities of Mn_2O_3 maxima decrease more rapidly than those of V_2O_5 as the reaction progresses. This effect may account for the increasing coverage of the Mn_2O_3 surface with V_2O_5 and MnV_2O_6 during reaction and may be considered to give additional support for the suggested reaction mechanism. It seems worth noticing that the above-discussed processes of surface diffusion of MoO_3 and

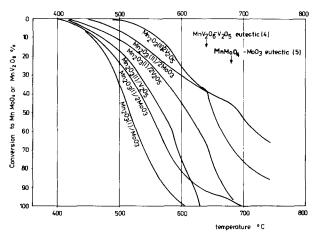


Fig. 2. Results of TGA of Mn₂O₃-MoO₃ and Mn₂O₃-V₂O₅ mixtures. The apparently abnormal increase in the reaction rate at later stages may be ascribed to the appearance of liquids above the eutectic temperatures indicated in the figures.

 V_2O_5 over the surface of Mn_2O_3 render possible, in the tricomponent mixtures, the ternary molecular contacts $Mn_2O_3-V_2O_5-MoO_3$ and may give rise to the direct formation of certain MV-X solid solutions according to Eq. (1).

Ternary Reactions, Annealing at 500-520°C

Figure 3 shows the reaction progress in the mixture "MV-10" as studied with a high-temperature X-ray camera at 520°C. The calculated conversions are merely approximate, due to the screening effect of V₂O₅. It may be said, however, that, after only 90 min of annealing, MoO3 is completely converted to MnMoO₄ and to a certain α -MV-phase, with both compounds appearing in comparable amounts. X-Ray lines of the α -MV-phase obtained are somewhat broadened, indicating nonhomogeneity in the Mo distribution with a predominant composition of x = 0.12. Fair quantities of V2O5 and Mn2O3 remain unreacted. After 2-3 hr the reaction is hindered and its further progress is hardly observed on heating at 520°C up to 70 hr. Similar results were obtained for mixtures of other x parameters ranging from 0.05 to 0.33. Formation of MV-X with X close to the nominal one is always accompanied by

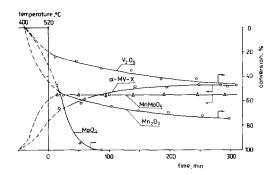


Fig. 3. Reaction progress in the "MV-10" mixtures as determined in a high-temperature X-ray camera at 520°C.

MnMoO₄ and unreacted Mn₂O₃ and V₂O₅. Apparently the last two oxides do not react, as they are isolated by MnMoO₄ and MV-X covering the surface of Mn₂O₃ grains.

Ternary Reactions, Annealing at 600°C

The results obtained on heating the reaction mixtures at 600°C enable one to distinguish two composition ranges in which some differences in the reaction path and the reaction rate are observed, namely, $0.02 \le x < 0.20$ and $0.20 \le x \le 0.33$.

(i)
$$0.02 \le x < 0.20$$
.

Table I summarizes the results of X-ray phase analyses of samples of the first range calcined at 600°C for 70 and 140 hr, to study

TABLE I Phase Composition of "MV-2", "MV-5", "MV-10", and "MV-15" after Annealing at 600°C for 70 and 140 hr

Designed x	Phase composition ^a after annealing		
	70 hr at 600°C		140 hr at 600°C
	Principal phases	Minor phases	
0.02	MV-0, Mn ₂ V ₂ O ₇	MnMoO ₄ , V ₂ O ₅	MV-0, MV-20
0.05	MV-0, MnMoO ₄	$Mn_2V_2O_7$, V_2O_5	MV-0, MV-20
0.10	$MnMoO_4$, $MV-0$	V_2O_5	MV-19, MV-3
0.15	$MnMoO_4$, $MV-2$	MV-20, V ₂ O ₅	MV-20, MV-3

^a The contents of MnMoO₄ and $\sim MV$ -20 increase and those of $\sim MV$ -0 and Mn₂V₂O₇ decrease monotonously along the series studied.

the early and later stages of the reactions. The direct synthesis of solid solution clearly detectable at 500°C is no longer observed. In the early stages of the reaction at 600°C, Mn₂O₃ is totaly consumed in reactions (2), (3), and (4). Reaction (2), producing MnMoO₄, proceeds at the highest rate, as proved before, and stops after complete exhaustion of MoO₃. The rest of Mn_2O_3 is consumed in reactions (3) and (4), yielding MnV₂O₆ and Mn₂V₂O₇ as products; the Mn₂V₂O₇ formation, however, is observed only in Mo-poor preparations with a favorable, high (Mn + V)/Mo ratio. Most probably, the Mn₂V₂O₇ initially formed in the system reacts further with V_2O_5 to form MnV_2O_6 :

$$Mn_2V_2O_7 + V_2O_5 = 2MnV_2O_6.$$
 (6)

The reaction pattern described above is apparently due to the higher activation energy (and consequently to the higher rate acceleration with increasing temperature) for reactions (3) and (4) than that for (1).

Thus it may be concluded that in the first stage of reaction at 600°C the oxide mixof overall composition Mn_{1-r} $V_{2-2x}Mo_{2x}O_6$ yield 2x $MnMoO_4 + 2x$ $V_2O_5 + (1 - 3x)MnV_2O_6$. The next reaction step necessarily involves the reaction between these three compounds which leads to the formation of the MV-20 solidsolution phase. The formation of a solid solution of this particular Mo content, independently of the initial mixture stoichiometry, seems to be due to the particular thermodynamic stability of MV-20, which among all possible α -type solid solutions decomposes at the highest temperature.

The mechanism of the ternary reaction

$$MnV_2O_6 + MnMoO_4 + V_2O_5 \rightarrow \alpha - MV - 20$$
 (7)

is not quite clear. It could be expected that this reaction will proceed in several binary steps, the first being a reaction between MnMoO₄ and V₂O₅ or MnV₂O₆. As found in a separate experiment, the reaction

$$MnMoO_4 + V_2O_5$$
= $Mn_{0.67}V_{1.33}Mo_{0.67}O_6 (MV-33)$ (8)

proceeds at $520-600^{\circ}$ C, but the MV-33 phase is not observed in ternary mixtures. MnMoO₄ and MnV₂O₆ could formally react with the formation of MV-X (in particular of MV-20) with separation of Mn₂O₃ or Mn₂V₂O₇ but the progress of this reaction was not observed in binary mixtures, nor were the above-quoted side-products identified in ternary mixtures. It should thus be concluded that reaction (7) may proceed only if all three reactants are simultaneously present in a mixture.

Homogenation reaction of the mixture of MV-20 and MV-0 could be expected as the next reaction stage at 600°C resulting in the formation of $MV-X_n$ of the initial mixture stoichiometry. Alternatively for the x <0.10 region one could envisage the formation of two solid solutions of compositions governed by the thermodynamic equilibrium at 600°C (cf. the phase diagram, Fig. 1). As, however, pure MnV₂O₆ is totally converted at 600°C to the high-temperature β -form, the homogenation reactions would require either its phase transformation or decomposition. Apparently the activation energy of this process is too high to be overcome at 600°C. This conclusion seems to be confirmed by independent experiments with binary mixtures which have shown that the reactions

$$\beta - MV - 0 + \alpha - MV - 20 \rightarrow \alpha - MV - 10, \quad (9)$$

$$\beta$$
-MV-0 + α -MV-30 $\rightarrow \alpha$ -MV-10 (10)

do not proceed at 540-600°C, contrary to another reaction,

$$\alpha$$
-MV-10 + α -MV-33 $\rightarrow \alpha$ -MV-X (0.10 < x < 0.33), (11)

in which both reactants show the same α -structure.

(ii)
$$0.20 \le x \le 0.33$$

The mixtures with compositions richer in Mo than in "MV-20" $(0.20 \le x \le 0.33)$ yield nominal brannerite solid solutions after heating at 600°C for 40 hr, with one intermediate cooling and grinding.

The first products of incomplete reaction in the mixtures from this range were MnMoO₄ and MnV₂O₆, an increase in the molybdenum content having the effect of increasing the amount of MnMoO₄ and decreasing the amount of MnV₂O₆.

In the "MV-20" mixture the consecutive reaction (7) leads to the total consumption of MnV_2O_6 , $MnMoO_4$, and unreacted V_2O_5 to the homogeneous MV-20 phase. In the mixtures with x > 0.20 the MV-20 solution formed along the same reaction path reacts further with excess $MnMoO_4$ and V_2O_5 or with MV-33 preformed according to reaction (8) to produce a homogeneous nominal MV- X_n phase. It is difficult, however, to establish the true reaction mechanism because of the overlapping of the diffraction maxima on X-ray patterns.

Ternary Reactions, Stepwise Annealing at 520-600°C

A stepwise annealing procedure was applied for samples with x ranging from 0.02 to 0.15 for which the preparation under the previously described conditions was unsuccessful. This method consisted in heating the reactant mixtures for 20 hr consecutively at 520 (twice), 540, 560, 580, 600, and 620°C with intermediate grinding between two thermal treatments. The idea was (i) to avoid formation of MnV₂O₆ in the early stages of reaction by enhancing the formation of MnMoO₄ and MV-X (of X close to X_n) at 520°C, and (ii) to accelerate the consecutive reaction of MnMoO4 consumption by raising the temperature in the next stages.

Two Mn_2O_3 preparations (I) and (II) were used in these experiments. It was expected that due to the weaker reactivity of $Mn_2O_3(II)$ (see Fig. 2) the successive stages of the reaction would be easier to distinguish.

Let us start by describing the behavior of Mn₂O₃(II)-containing mixtures of compositions "MV-15" and "MV-10". After the first stage of annealing (520°C, 40 hr) both samples contained fair amounts of nonreacted V₂O₅, Mn₂O₃, and MoO₃ accompanied by MnMoO4 and small quantities of brannerite-type solid solution with a MoO₃ concentration considerably exceeding those resulting from the stoichiometry of the mixtures (Fig. 4). On further heating Xray lines characteristic of initial reactants and MnMoO₄ decrease in intensity, and the quoted compounds disappear in the following sequence: MoO₃ (540°C), MnMoO₄ (560°C), Mn₂O₃ and V₂O₅ (600°C for "MV-15" and 620°C for "MV-10"). At the same time that the content of solid solution increases, it becomes more and more diluted. as can be judged from the shifts of X-ray diffraction lines. The applied procedure

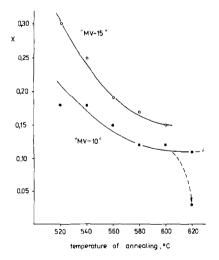


FIG. 4. Changes of MoO_3 concentration in $Mn_{1-x}\phi_x V_{2-x} Mo_{2x} O_6$ solid solutions formed on stepwise annealing for 20 hr at temperatures marked on abscissa.

leads to the formation of homogeneous, single-phase MV-15. The "MV-10" preparation, however, even after calcination at 600°C, contained a small amount of unchanged V_2O_5 . It disappeared completely after the sample was heated at 620°C for 20 hr. An increase, however, of the calcination temperature to 620°C produced—in agreement with the phase diagram—the formation of a small amount of low-doped MnV_2O_6 .

The results presented above show that under present experimental conditions solid solutions are predominantly formed from MnMoO₄ reacting first with V_2O_5 (reaction (8)) to MV-33 which is subsequently diluted by Mn₂O₃ and V_2O_5 :

$$MV-33 + Mn_2O_3 + V_2O_5 \rightarrow MV-X_n$$
. (12)

The absence of the direct path (I) may be explained by the much smaller area of Mn₂O₃ surface at which the direct solid-solution formation is supposed to proceed.

similar stepwise treatment Mn₂O₃(I)-containing mixtures of compositions "MV-15", "MV-10, "MV-5", and "MV-2" shows faster reaction progress, with only one difference in the mechanism, consisting in the fact that already in the early stages of the reaction some quantities of solid solution of the composition close to the nominal one are formed. After twofold annealing at 600°C for 20 hr the synthesis of MV-10 was successful, contrary to the syntheses of MV-5 and MV-2, for which the temperatures below curve AB in the phase diagram turn out to be insufficient to ensure complete reaction.

Conclusions

Solid-state reactions which may proceed in mixtures of MoO₃, Mn₂O₃, and V₂O₅ are summarized in Fig. 5. Figure 6 presents a scheme of the reaction zone in this ternary mixture in the early stages of reaction.

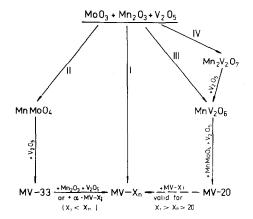


Fig. 5. Reaction pattern in a mixture of Mn_2O_3 , V_2O_5 , and MoO_3 .

The direct synthesis (path I) of a brannerite-type of solid-solution MV-X of a composition very close to the stoichiometry of the initial mixture is possible due to the efficient surface diffusion of MoO₃ and V₂O₅ over Mn₂O₃. It makes possible the respective ternary molecular contacts indispensable for this reaction. Reaction path I is favored at low temperatures (500– 520°C) and at the highly developed Mn₂O₃ surface, as both geometrical and energetic (low activation energy) factors are more advantageous for this reaction than for all others.

However, even under the above-mentioned favorable conditions the formation of a certain amount of MnMoO4 cannot be avoided (path II). MnMoO₄ reacts further with V_2O_5 , yielding MV-33, which can then be diluted with Mn₂O₃ and V₂O₅ (but not with MnV_2O_6 to the nominal $MV-X_n$. The progress of MV-33 synthesis at 520°C, however, is very slow. To accelerate it, a stepwise increase of temperature is advisable to avoid the parallel reaction path III in which weakly reactive MnV₂O₆ could be formed. On stepwise increase of temperature a large conversion to the nominal MV- X_n , MnMoO₄, and MV-33 is reached between 520 and 600°C, the phases obtained protecting the Mn₂O₃ surface against fur-

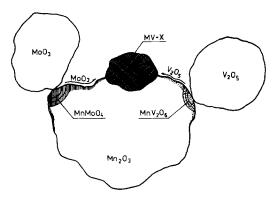


Fig. 6. Scheme of the reaction zone in the early stages of reaction in a mixture of Mn_2O_3 , V_2O_5 , and MoO_3 .

ther contact with V_2O_5 and consumption to MnV_2O_6 .

Reaction path III is favored at higher temperatures (600°C). MnV_2O_6 formed may be consumed to MV-20 on reacting with $MnMoO_4$ and V_2O_5 . In the MoO_3 -rich mixtures (x > 0.20) the least reaction leads to total consumption of MnV_2O_6 and the MV-20 solution formed may react further with the product of path II to produce a homogeneous nominal MV- X_n phase. In the MoO_3 -poor mixtures (x < 0.20) the stoichiometry-dependent quantity of MnV_2O_6 remains

unreacted and due to the kinetic hindrance it cannot be consumed in any reaction. Thus the equilibration of the mixture is practically impossible.

At 600°C path IV, in which intermediate formation of $Mn_2V_2O_7$ is observed may also take place. $Mn_2V_2O_7$, however, reacts relatively readily with V_2O_5 to form MnV_2O_6 and the system returns to path III.

References

- R. Kozkowski, J. Ziókkowski, K. Mocaka, and J. Haber, J. Solid State Chem. 35, 1 (1980)
- A. Magneli and B. M. Oughton, Acta Chem. Scand. 5, 581 (1951); A. Magneli and B. Blom-Berg, Acta Chem. Scand. 5, 585 (1951); A. Bielański, K. Dyrek, J. Poźniczek, and E. Wenda, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 19, 507 (1971).
- T. Bak. and J. Zókkowski, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 20, 821 (1972); J. Haber and J. Ziókkowski, in "Proceedings, 7th Int. Symp. on Reactivity of Solids, Bristol, 1972," p. 782.
- G. M. CLARK AND A. N. PICK, J. Thermal Anal. 7, 289 (1975).
- J. ZIÓŁKOWSKI AND P. COURTINE, Ann. Chim. 8, 303 (1973).